En route vers la Première

Partie A : Calcul numérique

Partie B: Fonctions

Partie C : Géométrie avec ou sans vecteurs

Partie D : Equations de droites

Partie E : Probabilités - Statistiques

Retrouver quelques automatismes de calculs pour bien démarrer l'année de première.

Partie A : Calcul **numérique**

1ère Partie: Des racines en tout genre

Exercice 1:

- a) Ecrire sans radical au dénominateur $A = \frac{5}{\sqrt{7} \sqrt{2}} \sqrt{7}$
- b) Simplifier l'expression $B = (\sqrt{\frac{5}{3}} \sqrt{\frac{3}{5}})^2$
- c) En déduire que le triangle EFG dont les dimensions sont données ci-dessous est rectangle en G.

$$EF = \frac{5}{\sqrt{7} - \sqrt{2}} - \sqrt{7}$$
 $FG = \sqrt{\frac{5}{3}} - \sqrt{\frac{3}{5}}$ $EG = \sqrt{\frac{26}{15}}$

Exercice 2: Soit f la fonction définie sur R par $f(x) = 3x^2 - 4x + 2$.

Calculer les images de -2; $\sqrt{2}$; $\frac{1}{3}$; 1- $\sqrt{3}$

2^{ème} Partie : Des calculs en veux-tu, en voilà!

Exercice 3: Simplifier
$$A = \frac{5}{4} - \frac{2}{3} \div \frac{16}{9}$$
 $B = (\frac{4}{27} \div \frac{2}{3}) \div (\frac{32}{7} \div \frac{16}{5})$

Exercice 4: Déterminer $I \gg J$ et $I \ll J$ lorsque

a)
$$I = [-8; 5]$$
et $J =]1; 7]$ b) $I =]-\infty; 3]$ et $J =]3; 10[$

Écrire à l'aide d'intervalles l'ensemble K des réels non nuls différents de -6 et 5.

3ème Partie: Développements – factorisations, impossible de s'en passer

Exercice 5: Factoriser:

$$A = -8x^{2} + 8x - 2$$

$$B = x - 9 - (x - 9)^{3}$$

$$C = 4x^{3} - x(x - 1)^{2}$$

$$D = (x + 1)(2x - 1) - 2x + 1 - (1 - 2x)^{2}$$

$$E = 0.25x^{2} - x + 1$$

$$F = 3(1 - x)^{2} - 27x^{2}$$

$$C = 4x^3 - x(x-1)^2$$
 $F = 3(1-x)^2 - 27$
Exercice 6: $f(x) = x+3+4(x-2)(x+3)-(x+3)^2$

Donner l'expression développée de f(x) - Donner une factorisation de f(x)

4ème Partie: Equations, de quoi devenir bon! A résoudre...

Exercice 7 : Déterminer l'ensemble des solutions de chacune des équations suivantes :

a)
$$4(x+1)^2 = (3x-1)^2$$

b)
$$(x+5)(3x+1) = x^2 + 10x + 25$$

c)
$$(x+5)(3x+5)=x^2+10x+25$$

d)
$$\frac{2-x}{x+4} = 2$$

d)
$$\frac{2-x}{x+4} = 2$$
 e) $\frac{3}{x+1} = \frac{-2}{2-x}$

Exercice 8: Soit f la fonction définie sur \mathbb{R} par $f(x) = -2x^2 + 5x - 1$.

- a) Quelle est l'image de -1 par la fonction f?
- b) Quel(s) est (sont) l(es) éventuel(s) antécédent (s) de -1 par la fonction f?

5ème Partie: Inéquations, des tableaux ou pas? A chercher puis à résoudre bien sûr ...

Quel est l'ensemble des solutions de l'inéquation. On donnera la solution sous forme d'un intervalle.

a)
$$-3y-4 \ge -y+7+2(y-3)-5$$
 b) $x-\frac{6x+1}{4} > 3$

b)
$$x - \frac{6x+1}{4} > 3$$

c)
$$3 - \frac{2x+3}{5} > \frac{4x-2}{3}$$

d)
$$\frac{x+2}{4} - 3 \ge \frac{1}{4} - \frac{3x-1}{2}$$

Résoudre à l'aide d'un tableau de signes les inéquations suivantes :

a)
$$(3-2x)(3+2x)<0$$

b)
$$\frac{x-1}{2x} \ge 0$$

c)
$$(3-x)^2 - 16x^2 \ge 0$$
 après avoir factorisé.

d)
$$x(x-1) \ge 0$$

e)
$$\frac{2x+1}{x+2} \le 1$$

f)
$$\frac{x(x+1)}{3-2x} \le 0$$

f)
$$\frac{x(x+1)}{3-2x} \le 0$$
 g) $\frac{x+5}{x-1} \le \frac{x-3}{x+2}$

Exercice 11:

Résoudre dans $\mathbb R$ les équations et les inéquations suivantes :

1)
$$|x| = 7$$

2)
$$|x| = \pi$$

1)
$$|x| = 7$$
 2) $|x| = \pi$ 3) $|x| = -\sqrt{2}$ 4) $|x| \le 3$ 5) $|x| > \frac{3}{4}$ 6) $|x| \ge 6$ 7) $|x - 3| = 2$ 8) $|x + 2| = 5$ 9) $|x - 7| < 4$

4)
$$|x| \le 3$$

5)
$$|x| > \frac{3}{4}$$

6)
$$|x| \ge 6$$

$$7) |x - 3| = 2$$

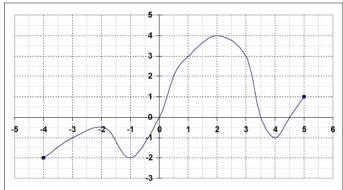
8)
$$|x + 2| =$$

9)
$$|x - 7| < 4$$

Partie B: Fonctions

🟓 1ère Partie: Représentation graphique – Tableaux de variations – tableaux de signes -

Exercice 12 : On donne ci-dessous la courbe représentative d'une fonction f:



Avec la précision permise par le graphique, répondre aux questions suivantes :

- a) Quel est l'ensemble de définition de f?
- b) Lire graphiquement l'image par f de -3?
- c) Lire graphiquement les éventuel(s) antécédents de 0 par f
- d) Résoudre graphiquement $f(x) \le -1$
- e) Donner le tableau de variations de f.
- f) Donner le tableau de signes de f.
- g) Citer les extremums de f sur son ensemble de définition.

Exercice 13 : Le tableau ci-dessous, donne le signe d'une fonction définie sur R

X	-0	∞		-	- 2		-	+∞
$\Gamma(x)$)		+		0	_		

Parmi les fonctions suivantes, quelles sont celles qui admettent le même tableau

$$f(x) = -x + 2$$
; $g(x) = -1 - \frac{x}{2}$; $h(x) = x^2 + 4$; $k(x) = 2x + 4$; $l(x) = -\frac{2x}{3} - \frac{4}{3}$

$$h(x) = x^2 + 4$$

$$k(x) = 2x + 4 \; ;$$

Les devises Shadok

Exercice 14:

Dans chacun des cas suivants, déterminer la fonction affine f puis donner son sens de variation :

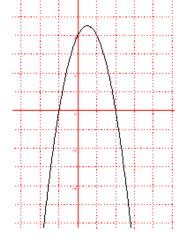
- 1) f(-2) = 3 et f(3) = -1
- 2) La droite représentant la fonction f passe par les points de coordonnées (-2;-1) et (1;3).

2ème Partie : Positions relatives de deux courbes.

Exercice 15: Soit f la fonction définie sur \mathbb{R} par

$$f(x)=(x+1)-(x+1)(2x-3)$$

- 1) Montrer à l'aide d'une factorisation que f(x) = (x+1)(4-2x)
- 2) Étudier le signe de f(x)
- 3) Voici le graphe Cf de la fonction f. Dresser le tableau de variation de la fonction f.



Soit g la fonction définie sur \mathbb{R} par g(x) = x + 1

- 1) Représenter Cg la courbe de g sur le même graphique.
- 2) Trouver les points d'intersection de *Cf* et *Cg* graphiquement puis <u>par le calcul.</u>
- 3) Résoudre l'inéquation f(x) < g(x).
- 4) Retrouver ce résultat graphiquement, expliquer.

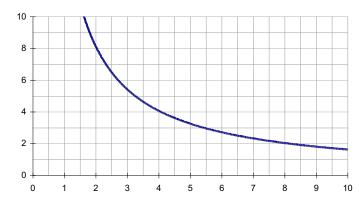
Exercice 16:

- a) Indiquer, sans justification, le tableau de variations de la fonction "carré", (*c'est-à-dire la fonction qui à chaque nombre réel fait correspondre son carré*).
- b) Le réel x vérifie : $-2 \le x \le -1$.

Quel encadrement peut-on en déduire pour x^2 ? Pour $-3x^2 + 1$?

Exercice 17:

Soit g la fonction définie pour tout réel x de l'intervalle $]0;+\infty[$ par $g(x)=\frac{65}{4x}$. Sa courbe représentative C_g est tracée ci-dessous, dans le plan muni d'un repère orthogonal.



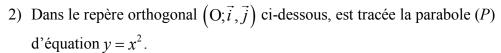
- 1) Calculer les images des réels 130 et $\frac{1}{3}$. Quels sont les antécédents éventuels par g de 0 et de 5 ?
- 2) Soit f la fonction définie pour tout réel x par $f(x) = \frac{5x}{13}$.
 - a) Tracer dans le repère précédent, la droite D représentative de la fonction f.
 - b) Résoudre l'inéquation $f(x) \le 2$
- 3) Résoudre dans l'intervalle $]0;+\infty[$, l'équation f(x) = g(x).
- 4) À l'occasion d'une kermesse, le responsable souhaite organiser une tombola pour laquelle chaque billet donne droit à un lot.

L'organisateur estime que pour un prix de vente de x euros du billet :

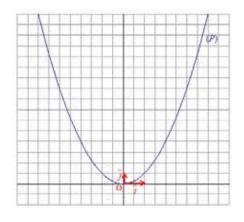
- le nombre de centaines de lots qu'il peut offrir est modélisé par la fonction f;
- le nombre de centaines de personnes susceptibles d'acheter un billet est modélisé par la fonction g.
- a) Selon cette estimation, pour que chaque billet donne droit à un lot, quel devrait être le prix de vente d'un billet ?
- b) Quel est alors le montant en euros de la recette que l'organisateur peut espérer ?

Exercice 18:

1) Déterminer la fonction affine f définie sur \mathbb{R} sachant que f(-3) = 3 et f(4)=10.



- 3) Tracer dans le même repère la droite D qui représente la fonction affine définie par $x \mapsto x + 6$.
- 4) Colorier en vert tous les points de la parabole situés au-dessus de la droite D. A quel ensemble appartiennent les abscisses de ces points ?
- 5) Résoudre graphiquement dans IR l'inéquation $x^2 \ge x + 6$.



3ème Partie: Recherche de maximum ou minimum.

Exercice 19: Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 - x - 6$

- 1) Calculer l'image de 0 par la fonction f, puis celle de -3 et enfin celle de $\sqrt{2} + 1$.
- 2) Vérifier que pour tout réel x, $f(x) = \left(x \frac{1}{2}\right)^2 \frac{25}{4}$.
- 3) En déduire que pour tout réel x, $f(x) \ge -\frac{25}{4}$. Que représente le nombre $-\frac{25}{4}$ pour la fonction f?

4ème Partie: Des fonctions du second degré.

Exercice 20 : Soit Cf la courbe représentative d'une fonction définie sur [-1;4]

Partie I: Lecture graphique Par lecture graphique, déterminer les images par f de -1 ;0 ;1 ;2 ;3

Par lecture graphique, déterminer les antécédents par f de -1 ;0 ;1 ;2 Déterminer par lecture graphique le signe de f(x). Etablir le tableau de variations de la fonction f.

Partie II: Calculs

Soit f la fonction définie sur [-1;4] par $f(x) = -x^2 + 4x - 2$, dont la 1

ci-dessus. Déterminer par le calcul les images par f de (-1) de $\sqrt{2}$, de $\left(-\frac{1}{3}\right)$ et de $(\sqrt{3}-1)$.

Partie III: à la calculatrice

Soit g la fonction définie sur [-1;4] par $g(x) = x^2 - 6$

Compléter le tableau de valeurs, le tableau de variation et tracer la coube Cg sur la calculatrie

\sim	ompicier ic	tableau de va	icurs, ic table	au ac variano	ii ct tracci ia	coupe eg sur	ia carculatific.
	X	-1	0	1	2	3	4
	g(x)						

X	-1	•••••	0	•••••	4
ation de la nction g	•••		••••	/ *	••••

Donner graphiquement les coordonnées des points d'intersection des 2 courbes Cf et Cg.

Exercice 21 : Une chaîne de restauration rapide fait une étude de marché pour fixer le prix de ses repas chauds comprenant un légume et une viande. L'étude se limite à un prix compris entre 4 et 8 euros.

L'offre correspond au nombre de repas proposés (en milliers) et elle est modélisée par la fonction f, définie par $f(x) = -\frac{75}{x} + 35$ où x est le prix d'un repas (en €).

La demande correspond au nombre de repas susceptibles d'être vendus (en milliers) et elle est modélisée par la fonction g, définie par g(x) = -5x + 45 où x est le prix d'un repas (en €).

- 1) a) Si on fixe le prix d'un repas à 4 €, comparer l'offre et la demande pour ce prix.
 - b) Reprendre la question pour un prix de 8 €.
- 2) Lorsque l'offre est égale à la demande, on atteint un prix d'équilibre.
 - a) En utilisant la fenêtre graphique de la calculatrice, donner ce prix d'équilibre et le nombre prévisible de repas pour ce prix.
 - b) Graphiquement, pour quels prix, l'offre est-elle supérieure à la demande ?
- 3) a) Démontrer que $f(x) g(x) = \frac{5(x-5)(x+3)}{x}$
 - b) Déterminer, par le calcul, pour quels prix l'offre est supérieure à la demande.
- 5ème Partie : Des fonctions de référence.

Exercice 22:

Déterminer l'ensemble de définition des fonctions suivantes :

$$f(x) = \frac{-5x+2}{(x-5)(-x+4)} \qquad g(x) = \frac{5x}{9x^2-1} \qquad h(x) = \frac{-x+3}{x^2+10} \qquad l(x) = \sqrt{x-3}$$

$$g(x) = \frac{5x}{9x^2 - 1}$$

$$h(x) = \frac{-x+3}{x^2+10}$$

$$l(x) = \sqrt{x - 3}$$

$$k(x) = \sqrt{7 - 14x}$$

$$k(x) = \sqrt{7 - 14x}$$
 $m(x) = \sqrt{(2x - 5)(-x + 3)}$ $n(x) = \frac{5}{\sqrt{-9x + 3}}$

$$n(x) = \frac{5}{\sqrt{-9x+3}}$$

Exercice 23:

On considère un réel x, en utilisant à chaque fois le tableau de variations de la fonction carré

- 1) Donner un encadrement de x^2 pour $-5 \le x \le -\frac{1}{3}$
- 2) Déterminer l'intervalle auquel appartient x^2 pour $x \in [-\sqrt{3}; 5]$,
- 3) Déterminer l'intervalle auquel appartient x^2 , si x < -4

Exercice 24:

On considère un réel x, en utilisant à chaque fois le tableau de variations de la fonction inverse :

- 1) Déterminer l'intervalle auquel appartient $\frac{1}{x}$ pour $x \in]0; 5]$,
- 2) Déterminer l'intervalle auquel appartient $\frac{1}{x}$, si $x \in [-3; 0[$

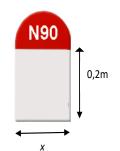
Partie C: Géométrie avec ou sans vecteurs

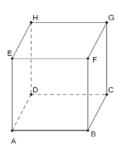
→ 1ère Partie : Quelques calculs de volumes

Exercice 25 : Quelle est la valeur exacte du volume d'une sphère de rayon 3 cm ?

Exercice 26:

Pour quelles valeurs de *x* l'aire du rectangle est-elle plus grande que celle du demi-disque ?





Exercice 27 : ABCDEFGH est un cube dont les arêtes ont pour longueur 6 cm. Donner la valeur exacte :

- a) Du volume de la pyramide ABCDE,
- b) Du volume du tétraèdre ABCF.

▶ 2ème Partie: La relation de Chasles – Expression vectorielle

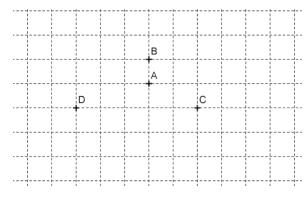
Exercice 28: Soit A et B deux points distincts et C le point tel que : $\overrightarrow{AC} = \frac{4}{3} \overrightarrow{AB}$.

Quel est le nombre réel k tel que : $\overrightarrow{BC} = k\overrightarrow{AB}$?

Exercice 29: Soit A, B, C et D quatre points distincts.

Construire les points M et N définis respectivement par :

$$\overrightarrow{AM} = -\frac{3}{2}\overrightarrow{AC}$$
 et $\overrightarrow{ND} = 2\overrightarrow{BA} + \frac{1}{2}\overrightarrow{CB}$



Exercice 30:

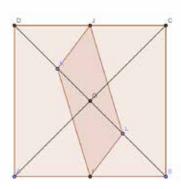
Soit un carré ABCD de centre O. Les points I et J sont les milieux respectifs de [AB] et [CD].

Soit K un point quelconque de [BD] autre que O.

Le point L est le symétrique de K par rapport à O.

Le but de l'exercice est d'étudier la nature du quadrilatère ILJK.

- 1) Dans le repère $(A; \overrightarrow{AB}, \overrightarrow{AD})$,
 - a) Donner les coordonnées des points I et J.
 - b) On note K(x; y) les coordonnées du point K dans ce repère. Exprimer les coordonnées de L en fonction de x et y
- 2) Démontrer que le quadrilatère ILJK est un parallélogramme.
- 3) a) Faire une figure en positionnant le point K tel que ILJK soit un rectangle.
 - b) Donner une condition sur OK pour que ILJK soit un rectangle.



Exercice 31 : ABCD est un parallélogramme.

- 1) Placer les points E et F définis par les égalités : $\overrightarrow{DE} = \frac{3}{4} \overrightarrow{AB}$ et $\overrightarrow{AF} = -\frac{4}{3} \overrightarrow{AD}$
- 2) Exprimer le vecteur \overrightarrow{AE} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AD} .
- 3) Exprimer le vecteur \overrightarrow{BF} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AD} .
- 4) Montrer que les vecteurs \overrightarrow{AE} et \overrightarrow{BF} sont colinéaires. Que peut-on en déduire pour les droites (AE) et (BF).

Exercice 32:

 \overline{ABC} est un triangle non aplati et les points R, S et T sont définis par les égalités vectorielles :

$$\overrightarrow{AR} = \frac{3}{2}\overrightarrow{AB}$$
 $\overrightarrow{BS} = \overrightarrow{AC}$ et $\overrightarrow{AT} = 3\overrightarrow{AC}$

1) Sur la figure, construire les points R, S et T

On cherche à démontrer que les points R, S et T sont alignés.

- 2) a) Montrer que $\overrightarrow{RS} = -\frac{1}{2}\overrightarrow{AB} + \overrightarrow{AC}$.
 - b) Montrer que $\overrightarrow{ST} = -\overrightarrow{AB} + 2\overrightarrow{AC}$.
- 3) a) Montrer que les vecteurs \overrightarrow{ST} et \overrightarrow{SR} sont colinéaires.
 - b) Conclure.
- **→** 3^{ème} Partie : Calcul analytique

Exercice 33:

Dans le repère orthonormé (O, I, J) on considère les points E(-3, -4); F(1, 2) et G(-2, 4)

- 1) Calculer les coordonnées du point M milieu de [EG].
- 2) Calculer les coordonnées du point H symétrique de F par rapport à M.
- 3) Montrer que le quadrilatère *EFGH* est un parallélogramme.
- 4) Calculer les distances EF, FG et EG. Quelle est la nature du triangle *EFG*?
- 5) En déduire la nature précise du parallélogramme *EFGH*. Justifier.
- 6) Soit C le cercle circonscrit au triangle *EFG*. Déterminer, en justifiant, le centre A et le rayon de C.
- 7) Soit T le point T(0; a)où a est un réel. Déterminer la valeur de a pour que le triangle EFT soit rectangle en E.

Partie D : Equations de droites

▶ 1ère Partie : Equation car<u>tésienne et équation réduite - coefficient directeur - droites parallèles</u>

Exercice 34:

Dans un repère orthonormé du plan, représenter ces droites après avoir donné les coordonnées de deux points ainsi qu'un vecteur directeur de chacune des droites et leur coefficient directeur.

$$d_1: 3x - 4y + 2 = 0$$

$$d_3: y = \frac{5}{2}x - 3$$

$$d_4: x-5=0$$

$$d_2: -x + y - 7 = 0$$

$$d_5: y+2=0$$

Exercice 35:

Dans un repère du plan, d_1 a pour équation $d_1: 2x+3y-4=0$ et d_2 a pour équation $d_2: 4x+5y-6=0$

- 1) Donner les coordonnées d'un vecteur directeur de chacune de ces droites.
- 2) Ces vecteurs sont-ils colinéaires ? En déduire que les droites ne sont pas parallèles.
- 3) Construire ces deux droites dans un repère orthogonal. Construire le vecteur de la question précédente.
- 4) Déterminer les coordonnées du point d'intersection de d_1 et d_2
- 5) Déterminer une équation de la droite d' parallèle à d_1 et passant par l'origine du repère.
- 6) Déterminer une équation de la droite d'' parallèle à d_2 et passant par A(-2;1)
- 7) Les points C(5;-1) et $D\left(\frac{5}{4};\frac{1}{2}\right)$ appartiennent-ils à d_1 ?

Exercice 36:

Dans un repère du plan, soit d_1 la droite passant par A et B avec A(-2;1) et B(-1;-3)

- 1) Donner un vecteur directeur de d_1
- 2) Donner 3 autres vecteurs directeurs de d_1
- 3) Donner l'équation cartésienne de la droite d_1
- 4) Déterminer une équation de la droite d parallèle à d_1 et passant par l'origine du repère.
- 5) Soit les points C(-1, -3) et D(1, 3); on cherche à savoir si les points A, B, C, D sont alignés.
 - a) $1^{\text{ère}}$ méthode : les coordonnées des points C et D vérifient-ils l'équation de d_1 ? Conclure.
 - b) $2^{\text{ème}}$ méthode : les vecteurs \overrightarrow{AB} ; \overrightarrow{AC} ; \overrightarrow{AD} sont-ils colinéaires ? Conclure.

2ème Partie : Position relative de deux droites : point d'intersection-système

Exercice 37:

On donne A(-2; -1), B(1; 1), C(2; 1) et D(8; 5) (on fera une figure pour vérifier les calculs) (AB) et (CD) sont-elles parallèles?

Si non, déterminer les coordonnées du point d'intersection des deux droites.

Si oui, déterminer le coefficient directeur de ces droites.

Exercice 38:

Soit
$$(O; \vec{i}, \vec{j})$$
 un repère du plan. Les points $A(-2; 2), B(\frac{1}{2}; \frac{7}{2})$ et $C(0; \frac{10}{3})$ sont-ils alignés ?

Exercice 39 : (on fera une figure pour vérifier les calculs)

On donne A(-2; 4), B(-1; 2) et C(3; -6). Les points A, B et C sont-ils alignés ?

Donner une équation cartésienne de la droite (AB).

Vérifier que les coordonnées du point C vérifient l'équation de la droite.

Exercice 40:

On se place dans un repère orthonormé $(O; \vec{i}; \vec{j})$. Soit A(-2;3) et B(3;1).

- 1) Déterminer l'équation cartésienne de (AB).
- 2) Soit C(1; $\frac{2}{5}$). Le point C appartient-il à (AB) ? Justifier par le calcul.
- 3) Déterminer par le calcul les coordonnées du point d'intersection E de (AB) et de l'axe des abscisses.

Exercice 41: Résoudre les systèmes suivants et interpréter graphiquement le résultat:

$$(S_1)\begin{cases} x + 2y = 3 \\ y = \frac{3}{2}x - \frac{1}{2} \end{cases} \qquad (S_2)\begin{cases} 2x - 5y = 7 \\ 3x + 4y = -1 \end{cases} \qquad (S_3)\begin{cases} 2x - 8y = 4 \\ -3x + 12y = -6 \end{cases} \qquad (S_4)\begin{cases} 3x - y = -10 \\ x + 6y = 22 \end{cases}$$

Partie E: Probabilités - Statistiques

Exercice 42 : Le code d'un antivol de vélo est une combinaison composée d'une lettre (A ou B) puis de deux chiffres, où chaque chiffre peut être 1, 2, ou 3 (Exemple : A23 ou B11). Zoé choisit un code au hasard.

- 1) Illustrer la situation par un arbre et en déduire le nombre de codes possibles.
- 2) Quelle est la probabilité que le code de Zoé comporte 2 chiffres distincts ?

Exercice 43: Répartition des notes d'une classe de seconde au 3ème trimestre

notes	6	7	10	12	15	Total
Effectifs	5	6	8	2	7	
Effectifs cumulés						
croissants						

- 1) Compléter le tableau ci-dessus.
- 2) Déterminer la moyenne de cette série de notes.
- 3) Calculer la médiane de cette série en expliquant la méthode.
- 4) Quel est le pourcentage d'élèves ayant la moyenne ?
- 5) Si le professeur augmente chaque note d'un point, que dire de la nouvelle moyenne et pourquoi ?
- 6) On conserve la moyenne du 3^{ème} trimestre calculée à la question 2). La moyenne du 2^{ème} trimestre était de 9/20, sachant que la moyenne annuelle est de 10/20, quelle était la moyenne du 1^{er} trimestre ?

Exercice 44 : Un hôpital comporte deux salles d'opération (S1 et S2) qui ont la même probabilité d'être occupées. La probabilité que l'une des salles au moins soit occupée est 0,9 ; celle que les deux salles soient occupées vaut 0,5.

On notera les événements : S1 "La salle S1 est occupée"

S2 "La salle S2 est occupée"

Exprimer chacun des événements suivants à l'aide de S1 et S2, puis calculer leur probabilité :

- a) A: « La salle S1 est libre »
- b) B: « Les deux salles sont libres »
- c) C: « L'une des salles au moins est libre »

Les perles de Maths...

- Le carré est un rectangle qui a un angle droit à tous les bords.
- Un carré c'est un rectangle un peu plus court d'un coté...
- Le zéro est le seul chiffre qui permet de compter jusqu'à un.
- Un septuagénaire est un losange à sept cotés.
- Tous les chiffres pairs peuvent se diviser par zéro.
- Une ligne droite devient rectiligne quand elle tourne...
- Un compas s'utilise pour mesurer les angles d'un cercle.
- Une racine carrée est une racine dont les quatre angles sont égaux.
- Les Chinois comptent avec leurs boules.
- Un polygone est une figure qui a des côtés un peu partout.
- On dit qu'une ligne droite est perpendiculaire quand elle se met à tourner d'un coup.
- L'ovale est un cercle presque rond, mais quand même pas.
- Le losange est un carré tordu en biais.
- Le 0 est très utile, surtout si on le met derrière les autres nombres.
- Un nombre réel est un nombre qu'on peut toucher du doigt.
- La loi des probabilités s'appelle ainsi car on n'est pas sûr qu'elle existe.
- L'ordinateur peut faire plus de calculs que le cerveau de l'homme car il n'a que ça à faire.

